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Abstract

Vibration acceleration levels on large space platforms exceed the requirements of many

space experiments. The Microgravity Vibration Isolation Mount (MIM) was built by the Canadian

Space Agency to attenuate these disturbances to acceptable levels, and has been operational on the

Russian Space Station Mir since May 1996. It has demonstrated good isolation performance and

has supported several materials science experiments. The MIM uses Lorentz (voice-coil) magnetic

actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack)

level. Payload acceleration, relative position, and relative orientation (Euler-parameter)

measurements are fed to a state-space controller. The controller, in turn, determines the actuator

currents needed for effective experiment isolation. This paper presents the development of an

algebraic, state-space model of the MIM, in a form suitable for optimal controller design. The

equations are first derived using Newton's Second Law directly; then a second derivation (i.e.,

validation) of the same equations is provided, using Kane' s approach.
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Introduction

Acceleration measurements on the U.S. Space Shuttle and the Russian Mir Space Station

show acceleration environments that are noisier than expected [ 1]. The acceleration environment

on the International Space Station (ISS) likewise will not be as clean as originally anticipated; the

ISS is unlikely to meet its microgravity requirements without the use of isolation systems [ 1], [2].

While the quasi-static acceleration levels due to such factors as atmospheric drag, gravity gradient,

and spacecraft rotations are on the order of several micro-g, the vibration levels above 0.01 Hz are

likely to exceed 300 micro-g rms, with peaks typically reaching milli-g levels [3]. These

acceleration levels are sufficient to cause significant disturbances to many experiments that have

fluid or vapor phases, including a large class of materials science experiments [4].

The Microgravity Vibration Isolation Mount (MIM) is designed to isolate experiments from

the high frequency (>0.01 Hz) vibrations on the Space Shuttle, Mir, and ISS, while passing the

quasi-static (<0.01 Hz) accelerations to the experiment [5]. It can provide up to 40 dB of

acceleration attenuation to experiments of practically unlimited mass [6]. The acceleration-

attenuation capability of the MIM is limited primarily by two factors: (1) the character of the

umbilical required between the MIM base (stator) and the MIM experiment platform (flotor), and

(2) the allowed stator-to-flotor rattlespace. A primary goal in MIM design was to isolate at the

individual experiment, rather than entire rack, level; ideally the MIM isolates only the sensitive

elements of an experiment. This typically results in a stator-to-flotor umbilical that can be greatly

reduced in size and in the services it must provide. In the current implementation, the umbilical

provides experiments with power, and data-acquisition and control services. Even with the

approximately 70-wire umbilical the MIM has demonstrated good isolation performance [5].

The first MIM unit was launched in the Priroda laboratory module which docked with Mir

in April 1996. The system has been operational on Mir since May 1996 and has supported several

materials science experiments. An upgraded system (MIM-2) was flown on the U.S. Space Shuttle

on mission STS-85 in August 1997 [5].
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In order to design controllers for the MIM it was necessary to develop an appropriate

dynamic model of the system. The present paper presents an algebraic, state-space model of the

MIM, in a form appropriate for optimal controller design.

Problem Statement

The dynamic modeling and microgravity vibration isolation of a tethered, one-dimensional

experiment platform was studied extensively by Hampton [7]. It was found that optimal control

techniques could be effectively employed using a state-space system model, with relative-position,

relative-velocity, and acceleration states. The experiment platform was assumed to be subject to

Lorentz (voice-coil) electromagnetic actuation, and to indirect (umbilical-induced) and direct

translational disturbances.

The task of the research presented below was to develop a corresponding state-space model

of the MIM. Translational and rotational relative-position, relative-velocity, and acceleration states

were to be included, with the rotational states employing Euler parameters and their derivatives.

The MIM dynamic model must incorporate indirect and direct translational and rotational

disturbances.

System Model

A schematic of the MIM is depicted in Figure 1. The stator, defined in reference

frame (_), is rigidly mounted to the orbiter. The flotor, frame O, is magnetically levitated above

the stator by eight Lorentz actuators (two shown), each consisting of a flat racetrack-shaped

electrical coil positioned between a set of Nd-Fe-Bo supermagnets. The coils and the

supermagnets are fixed to the stator and flotor, respectively. Control currents passing through the

coils interact with their respective supermagnet flux fields to produce control forces used for flotor

isolation and disturbance attenuation [8].

The flotor has mass center F* and a dextral coordinate system with unit vectors _fl' -J_2' and

f3' and origin F0 . The stator (actually, stator-plus-orbiter) has mass center S* and a dextral

coordinate system with unit vectors __1,-_2' and -_3' and origin S 0. The inertial reference
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frameO is similarly definedby _hi,_h2,and_h3,andorigin No. The umbilical is attached to the

stator at Su, and to the flotor at F. When the flotor is centered in its rattlespace (the "home"

position), F* and F are located at stator-fixed points F*,h and F,h, respectively.

Figure 1. Schematicofthe MIM

State Equations of Motion

Translational Equations of Motion

Let E be some flotor-fixed point of interest for which the acceleration is to be determined.

If E has inertial position --u0Er, then its inertial velocity and acceleration are _U E -- dt r--uE and

NdENd /: - -- r respectively.
--N E dt dt --N E '

(The presuperscript indicates the reference frame of the

differentiations. The subscripts indicate the vector origin and terminus.) The angular velocity and

angular acceleration of the flotor with respect to the inertial frame are represented by Nine and

N__a_.F,respectively, where NaY = Nd_

NASA/TM--1999-208906 4



Let F be the resultant of all external forces acting on the flotor; ___Mr/r* (or simply M), the

moment resultant of these forces about F*; m, the flotor mass; and/t;/t;* (or __/), the central inertia

dyadic of the flotor for _J31'-f2' and -f3" Then Newton' s Second Law for the flotor can be

expressed in the following two forms:

and

From Equation (2),

F = m_N0V* (Eq. 1)

M=_/. _v+ _v ×(/__ .Nc0V). (Eq. 2)

____-r[__-___x(__,_-_t] (Eq. 3)

It will be useful to find an expression for ?--'U0Ein terms of the acceleration f--UoS,of the umbilical

attachment point S,, and in terms of the extension of the umbilical from its relaxed position.

Begin with the following: r s v = £U E + £EV -- £U So -- £SoS " (Eq. 4)

Differentiation of Equation (4) yields

r_'_r=r_'N _r -LN _(o_x •E+ 0__ X £Er So-- -- rsos (Eq. 5)

A second differentiation gives

....£sr =£NoE+ X£Er+Nc0 v XrEr)--__N Xrss _ _ rss ). (Eq. 6)

Substitution for Nat from Equation (3) into Equation (6) yields

(Eq. 7)

NOr= Nor + SOO___V. (Eq. 8)

In these equations
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Under the assumptions that NwS and N__.a_.Sare negligibly small and, therefore, that

Equation (7) reduces to

iJN S _ iJN S u '

Linearization about swv = 0 yields the following result:

+{z'

(Eq. 9)

+swr x (swr X£EF ). (Eq. 10)

(Eq. 11)

Appropriate expressions for F and M will now be determined, for substitution into Equations (1)

and (11), respectively. Those equations will be used in turn to obtain a more useful expression for

?-'s,v_. [See Equations (43-48).]

i

The force resultant F is the vector sum of the eight actuator (coil) forces F c(i = 1..... 8),

with resultant Fc; of the umbilical force F,,, caused by umbilical extensions from the relaxed

position; of the direct disturbance forces, with resultant Fd; and of the gravitational force F_g.

Gravity may be neglected for a space vehicle in free-fall orbit. The moment resultant M is the

vector sum of the moments due to the coil forces, with resultant M ; of the moment M, due to

the umbilical force F, ; of the moment Mr due to the umbilical rotations from the relaxed

orientation; and of the moment M d due to the direct disturbance forces. There is no moment due

to gravity, since M is about the flotor center of mass F*. In equation form, assuming the ith coil

force to be applied at flotor-fixed point Bi,

8

F=_F_ +F, +F d (Eq. 12)
i=1

and M=_£r _xF_ +Lr r xF, +Mr+___M d. (Eq. 13)
i=l
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Moreexplicit expressionsfor Fic and F, will now be developed. If the actuator has coil

current Ii [_, length L_, and magnetic flux density B__, then the associated actuator force

becomes

Fic =-I_L_B_I__ x_i. (Eq. 14)

Assume a translational stiflhess K_ for an umbilical elongation in the __direction, and a

corresponding translational damping C/. Let F b represent the umbilical bias force, exerted by the

umbilical on the flotor in the home position. Then the total force of the umbilical on the flotor

- i=1 [ dt r

becomes

i __ F.SF.t = - Kt F---S F F

Define the following, for i = 1, 2, 3:

and

If Nws = 0, Equation (15) becomes

(Eq. 15)

(Eq. 16)

(Eq. 17)

F ,, i i_ =- K, xa_ +C, xb_ _ +Fb. (Eq. 18)
!=

The relative positions x_ and the relative velocities xbi will be six of the nine translational states

used in the state-space formulation of the system equations of motion.

As with F_ and F, above, M,r can also be expressed in more explicit form, in analogous

fashion. Assume a rotational stiffness K_rand a rotational damping C¢, for umbilical twist about

the _ direction. Let v/s^0 n o represent the rotation of the flotor, relative to the stator, from the
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relative position in which the 33 and si coordinate systems are aligned, v/s__h0isthe rotation axis,

and _) is the angle of twist about that axis. LetM brepresent the umbilical bias moment, exerted by

the umbilical on the rotor in the home position. Then the moment M., r can be expressed by the

following:

(Eq. 19)

= - K_ r/s ^ n_n_o•_ _ + Mb. (Eq. 20)
i=l

Equation (20) can be expressed in alternate form using Euler parameters. Let F/s__h0be

= + +

described in (_) by

Define the following Euler parameters [9].

F/S_0 = COS_,

_s)r/s_31 = e1sin_,

(s)v/s_2 = e 2 sin_,

_s)v/s_33 = e3 sin_,

and v/s_= sin _2 r/sh- o"

For small values of _), the Euler parameters can be simplified:

F/s[30= 1,

(Eq. 21)

(Eq. 22)

(Eq. 23)

(Eq. 24)

(Eq. 25)

(Eq. 26)

(Eq. 27)
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and

Note that, for small angles,

(S)F/S_I = e, _)/2,

(S)F/S_2 = e2 0/2,

(S)F/S_3 = e30/2,

r/_=*2r/_O.

This equation can be used to simplify the stiffness terms of Equation (20).

As for the damping term, Equation (31) can be differentiated to yield

or, for small angles,

Equation (20) now becomes

= cos_ F/Sn, +sin no

2F/S__= + F/Sfi_O+ _ F/S__o.

2<( --
Mur = i=1 ( " _i'_- i=1 -- " + Mb"

Define the following, for i = 1, 2, 3:

F/_")( di _ " _i

(Eq. 28)

(Eq. 29)

(Eq. 30)

(Eq. 31)

(Eq. 32)

(Eq. 33)

(Eq. 34)

(Eq. 35)

(Eq. 36)

and xei = 2 di. (Eq. 37)

The assumption that NwS is negligible yields, finally,

{3 }-2 ___ K_xdi CrXei]__i -1- m bMr = [ + i ^ .
i=1

(Eq. 38)

NASA/TM--1999-208906 9



Note that Equation (11) describes ?-'s,r, in terms of the acceleration of an arbitrary flotor-

fixed point E. For E located at flotor mass center F *, Equation (11) can be used straightforwardly

with Equation (1) to yield

1 / \

f_s- F+II-1.M)×rpv-'/_UoS. (Eq. 39)
F /T/--

Define now three unknown-acceleration terms, to be used with Equation (39). The first term

represents the indirect translational acceleration disturbance input to the flotor, applied at the stator

end of the umbilical:

a,, = f--NoS." (Eq. 40)

The second term represents the direct translational acceleration disturbance to the flotor, due to

unknown disturbance force F d •

1
a d = -- F d . (Eq. 41)

m

And the third represents the direct angular acceleration disturbance input to the flotor, due to F d •

_d =/-1. Md ' (Eq. 42)

Substitution from Equations (12), (13), (14), (18), (38), (40), (41), and (42) into (39) yields the

following result:

.. 1 F F,)+1-1 +---M,r)×£vv+ ×£v - +ad, (Eq. 43)

8 8

where F c = _],Fio = _],(-IiLiBiZ i x_i ) , (Eq. 44)
i=1 i=1

F., i i + Fb_ = - K, Xai -t'- C t Xbi i -- ,

!=

(Eq. 45)

8 8

M e = _,Mio = _,£r._ix(-IiLiBiZi x_i), (Eq. 46)
i=1 i=l
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and

i i ^

m__m_ut=--r_F.F_ X KtXai "Jr-CtXbi S__i ,

!=

__ =-2 i CrXei]s_ + MbM,r Krxd_ + _ ^ .

Substitution from Equation (43) into Equation (11) produces the following equation for the

acceleration of arbitrary flotor point E:

1 F E •

Assuming UooSto be negligible, one also has the following:

and

(Eq. 47)

(Eq. 48)

(Eq. 49)

(Note that assuming UooS

Sd

?--SF -- dt (£S F )' (Eq. 50)

Sd 2

-

to be negligible does not imply that O and O are identical; it means

rather that O can be treated as if it is in pure translation relative to O for the frequencies of

interest.) Equations (43), (49), (50), and (51) provide the basis for a state-space form of the

translational equations of motion, using xa_, xbi, and low-pass-filtered approximations to the _

components of ?--'U0E[see Equations (94) and (99)], as states.

Rotational Equations of Motion

Let
F/S_=sin _2 FIsh as before [Eq. (26)].

-- --4

Differentiating the left side twice produces

S

(Eq. 52)

and
NN S 2 S

(Eq. 53)

NASA/TM--1999-208906 11



Assuming as before that UooS = 0, Equations (52) and (53) become, respectively,

v/s_ = sd v�7(

and r/s(_ = sd 2_

Returning to Equation (26), two differentiations of the right side yield

r/s _ sln_r/Sno + _) -- no+ sin 2 no'cos_ n 0- _cos 2 _

Linearizing about _) = 0 and + = 0, Equation (56) becomes

2 v/s_ = _ v/s_ o + 2 _) v/s:,%+ _ v/s:¢%.

Equations (34), (54), (55), and (57) provide the basis for a state-space form of the rotational

equations of motion, using as states the _i components of v/sp and of v/s_ (i.e., Xdi and xe_,

respectively, for i = 1, 2, 3).

(Eq. 54)

(Eq. 55)

(Eq. 56)

(Eq. 57)

Equations of Motion in State-Space Form

From Equation (16),

r_ v - r_ v = Xal_l + xa2_2 + x_.

Differentiation, along with the use of Equations (17) and (50), leads to the following:

;S F -- _S F

A second differentiation yields

A A A

= XblS_. 1 -[- Xb2S 2 -_- Xb3S 3 ,

(Eq. 58)

(Eq. 59)

/3S F -- £S F = "_'b1_1 "[- "_'b2_2 "[- "_b3_3" (Eq. 60)

Introduce the use of a presuperscript in parentheses to indicate the coordinate system used for

componentiation. (This notation allows vectors to be expressed unambiguously in terms of their
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measure numbers.) Then Equations (58) and (59) take the respective forms,

I.Xa3 J

and (s)i--s r -(s)i--s r = (s)i--s r = k_, = x_b, (Eq. 62)

_x_d and x_e have corresponding definitions.where _xa and x_b are defined as indicated.

Equations (36) and (37).]

(Eq. 61)

[Cf.

Equations (43) and (60) can be used together to develop a state-space equation for _2b .

First, express Equation (60) in measure-number form:

txb3J

Next, define rotation matrix S/VQ by

s--2 = S/VQ 2 '

LAJ

where the prefix indicates the rotation of frame (_) relative to frame l_) .

arbitrary vectors

and

(Eq. 63)

(Eq. 64)

Finally, observe that, for

£1 =x,f,+ y,f2 +z*f 3 (Eq. 65)

£2 = x2J_ 1 + Y2_ 2 + z2f 3 , (Eq. 66)

the cross product can be expressed in determinant form by

F_.1 X £2 = "aVl Yl , (Eq. 67)

Y2

NASA/TM--1999-208906 13



or in matrix form (i.e., using measure numbers) [9], by

r [0zlyl][x2tiF1 X £2) = Z1 0 --X 1 72 •

- Yl xl 0 Z 2

(Eq. 68)

Represent the above skew-symmetric matrix by (v)r_ Using this notation, Equation (43) can be

expressed as follows:

1 (S)F +(s) F sir -F_ t .... j- -- -r_ --d- (Eq. 69)Sb=m[ -c -_]- Q _r_rx I-l[_r_M+_r_M._ +_r_M 1 s/FO _r_rx /-I(F)M (S)a.'n+(S)ad'

where I is the inertia matrix corresponding to I .

Linearizing Equation (3) about NWV= 0 yields

NaY= I-1.M. (Eq. 70)

__ [_^ .. _, .1F/S :. F/S ;<
But Nat Nd2[*r/Sn,):*r/sh_,+zQ n,+, n,. (Eq. 71)

_ = dt 2

From Equations (57), (70), and (71),

2 v/s_ : 1_1. M, (Eq. 72)

or, equivalently, EN2 12 'd_(r/s_) :I-1.M
dt 2 \ - = __.

(Eq. 73)

Application of Equation (55) leads directly to

Sd2

dt 2 \v_] 2 = --"
(Eq. 74)

In measure-number form,

1 _/VQ1-1 _V_M,
2--e-- 2 (Eq. 75)

1 s _F (F_
l S/FQI-I[_F_M.t+_F_M +_F_Mc]+-_/Q--dor, equivalently, _2e= -_ .... • (Eq. 76)

NASA/TM--1999-208906 14



Six state equations of the system are given by Equations (17) and (37), iterating on i; six

more, by Equations (69) and (76). The latter six are written in terms of the various forces and

moments acting on the system, which loads have been defined in vector form by Equations (44)

through (48). These loads can be rewritten in measure-number form and substituted into Equations

(69) and (76), as follows. Beginning with Equation (44), the ith control force can be expressed as

(S)^x S/FQ (F)^ ]
(s) i _L i _'F c = I i =Fcui, (Eq. 77)

Bi Bill i i

The resultant control force becomes

8

(S)F = _ (S)F' = F _u, (Eq. 78)
i=1

where F_, F , u_ , and _uare defined as indicated.

Next, using Equation (61) with (45), the translational force the umbilical exerts on the

flotor can be expressed by

(S)F., -K,x_ C_xb+(S)F b F.,_x_ _ . (s),_= _ - _ = - +l_,tbX_b+ r__b, (Eq. 79)

[1 1K t 0 0

where K, = 0 K) 0 , (Eq. 80)

0 0 K_

[i;oo]C, = C) 0 ,

o c2

(Eq. 81)

and F,,, and F., bare defined as indicated.

The ith control force F i exerts on the flotor a moment M _ defined by Equation (46).
--c --c '

Using again the notation introduced with Equation (68), this moment can be expressed by

[ (F) x S/F,,._T(S)^x S/FQ (F)^ ](F)M_ = -L_ B_ £F*_i U. _I_ B_ I_ = M_u_ , (Eq. 82)
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and the resultant moment by

(F)M = __, (F)M_ = M u_, (Eq. 83)
i=1

where Mc i and M are defined as indicated.

The umbilical force F, exerts on the flotor a moment___M,, given by Equation (47).

Substituting from Equation (79), this moment can be expressed by

(F)M (F) x S/F r f__ut = F_.F*Fu Q [ u,aX__a+ F,,Sb]; (Eq. 84)

or, alternatively, (F)___M,,= M ,a_x, + M ,b_X_b, (Eq. 85)

for M,, and M, b appropriately defined.

Finally, Equation (48) expresses the moment Mr that the umbilical applies to the flotor due

to umbilical rotational stiflhess. The following equations express Mr in measure-number form:

(Eq. 86)S/F r K 2S/F r _ +(F)Mb _ ,(V)m__m__u r = -2 Q rXd-- Q CRY___ e __ = MurdX__ d -k- MureXe+ (V)m__m_.b

IK 0 0 ]

r

where K r = 0 K2r 0 , (Eq. 87)

0 0 K 3
F

(Eq. 88)[ir00Cr= Cr2 0 ,

o Cr

and Mur d and Mur e are appropriately defined.

Substituting from Equations (77) through (88), Equations (69) and (76) become, respectively,

"_b IiFuta--S/FQ (F) x r-1 _,lr ):_ / 1 ):_
rF F I JVI._ _ + F._b- S/FQ (F).x I-1M.,b bKF F

 Eq.
-(S)am+(s)ad_r _ + 1 (S)Fb_S/F Q (F)p_F.FuX (F)_d__ S/FQ (F)p_F.FuIx r- 1 (F)Mb

m

NASA/TM--1999-208906 16



and

l s/rQI-l[M_x_+ + +M x___]
.ice= _ _ M ,,b X_b M ,rd X_d

(Eq. 90)

+ls/vQI-1Mcu+l S/vQ- (V_d +ls/vQI-12 (V)Mb'--

For completeness, Equation (37) can be rewritten as x_"d = x_. (Eq. 91)

To include _S)?_UoE as states, define _xc by

(oh(S_'/_UoE = X__"c +(ohX__c, (Eq. 92)

for some high value of circular frequency (o h . Taking the Laplace Transform,

{(S_r __ s+(oh L {So}, (Eq. 93)
T, { _NoE J- ('Oh $2

(s_): for co <<(oh. (Eq. 94)so that x_c= _NoU

Now using Equations (78), (79), 83), (85), (86), and (92) with (49),

(
_c =O)hlLfuta-- S/FQ (F)x r-1 a_ a

FF* E" 1Vlu, a +(O h F _-S/FQ FF* E" 1Vlutb )._b--(OhX ckm

(F'Fx i-1a ,. .[S/F.q (F) x El-laure)X__e +O)h(LFc__S/FQ (F,_FEI-1M c) (Eq. 95)_ _h _ S/FQ
--FE urdlkd --mh_ _ £F \m

I(F )M_.M_.b,

A state-space representation of the system is given by Equations (62), (89), (90), (91), and

(95), for state vector

x__

x_b

x_=_x_ c .

X__d

_e

(Eq. 96)
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For the small rotation angles associated with the MIM, S/FQ is approximately equal to the 3 x 3

identity matrix, in which case the state equations have constant coefficients. Specifically,

x_" =x__b,

__2b (1F.I_--(F) x I-1M_)+(1F.Ib--(F)x I-1M.tb)y_= £FF _ r-FF b

FFFI iVlurdJ)(d__( FFFI iVlureJ)(e__ - 5__(F) x .-1..r

_(S)ain+ (S)a d + i (S)Fb_(F)E F F (F)O_d --(F)EF F 1-1 (F)Mb '

ffl

F-FEI IVlurd) )(d __(_Oh( F-FEI IVlure) )(e +(_O h fc - (F) x .-1. _-

+(o h (S)ad +co ( 1)(S)F co (F_rX {(F)a (F)Mv)
- h_-_) _b-- h _FE[ --d+/-1 __ ,

x_'_= x_e ,

1 i_l[MutaXa + + + MureXe ]
X---e = -2 -- Mutb X---b Murd X---d

1 1_1 1 1_1 (F_Mb)+-2 Mcu+- -2((F_d +

(Eq. 97)

(Eq. 98)

(Eq. 99)

(Eq. 100)

(Eq. 101)

State-Space Equations With MIM-2 States

The above state equations must be modified to account for the states actually used in

MIM-2. Designate by the post-superscript R the states defined above; and by the post-superscript

C the states used with MIM-2. The former set of states are as follows, for i = 1, 2, 3:

R

x _i = LF_,,F_"_ , (Eq. 102)

R .R
xbi = x_i , (Eq. 103)
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X c = T, 1 (-Oh T, \ _NoE ,

tt +(oh )
(Eq. 104)

R F/So ^

Xdi= p'Si, (Eq. 105)

R .R

and xei = xdi; (Eq. 106)

c (s) rx_a= -F;F*, (Eq. 107)

C .C

_b =_a, (Eq. 108)

.,_xC =_x = L (Oh L if,

s +(oh

(Eq. 109)

and the latter,

C R F/Sn ^
X_d = X_d = p" S__i, (Eq. 110)

and _x_c = x__ff= x_"c . (Eq. 11 l)

(Eq. 112)

Consider now the equation,

F--SF = F--SF -+- r--F F -+- £F F "

Differentiating twice, under the prior assumption that N(OS is negligible, leads to the following two

Sd£s F Sd£F*F* SOFequations: _ -- _ (Eq. 113)
dt dt + × £F*F,

S 2 Sd2 r
and d £SuF u --F,_F* .+ X£FF+ __ X( X£FF) (Eq. 114)

dt 2 - dt 2 -

Linearizing about _o___v = 0 as before, the following interrelationships are found to hold for the two

x___=x__c +(S/FQ (F_r_F.F + (S_£F F*)' (Eq. 115)

(Eq. 116)R C S/FQ (F) X S/FQr RX__b = X__b -- 2 F__F.F, X__e ,

(Eq. 117)

sets of states:

• R • C S/FQ (F)p X 1-1 (F) M
")( b = ")( b -- --F*F u --"
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Designate by (s)£b the final two terms of Equation (115). Substituting now from Equations (115),

(116), and (117) into Equations (62), (89), (90), (91), and (95) yields the following state equations

for MIM-2:

• c c
x_a =x_b, (Eq. 118)

1 S/FQ _ _ c (1 S'F___=_o__F_a- _)_-IM_a)_a+_O_(_Fz_0_._"_;_-IM_

-(oh_Xc (ohl,- _2

(--2 S/FQ (F) x S/F_r +2S/FQ (F) x .-1_1 S/FQ S/FQr S/FQ+(Oh ---_F_b rFF_ U EFE1 IV'u_b (F_FF_ (F)FF*EI-1Mure Ce

(_)r_*EI-1Me"+COh(S)adhim) --b

( 1 S'F )(s)rb

• c c
_Xd = X_._ ,

x__= I M._a x_o + FQI-1M.tb X_b + I M.r d X__d

(Eq. 119)

(Eq. 120)

(Eq. 121)

(Eq. 122)

Again, for the small rotation angles associated with the MIM, S/FQ is approximately equal to the

3 × 3 identity matrix; Equations (118) through (122) reduce to the following:

• c c
x__ = x_b, (Eq. 123)
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•c ( 1 _F)x __ "_c ( 1 _F)x .__,. c c

+(Oh £F*EI M"rd d'_-(J)h F.tb £F*Fu "I-Z" £F*EI lVlutb -- u-- £F*EI lVlure

\ /

t+(Dhl - FF,e A Ctd + 1-1

(Eq. 124)

(Eq. 125)

• C C

__Xd = X__.e , (Eq. 126)

-}-I- I-1Mure--l-lMutb(F) XF*Fu Ce-}-I2I-1Mc (Eq. 127)

State-Space Equations Using Kane's Dynamics [ 10]

The above state equations for MIM-2 can be derived alternatively, by the approach

commonly called "Kane's Dynamics." First define generalized coordinates qi and generalized

speeds ui as follows. [Note the use of post-superscripts now, instead of the previous post-

subscripts, with position (and, later, velocity and acceleration) vectors. The post-subscript

position, with vectors, is used for another purpose in Kane's notation, as will be seen.]

ql = £Fy. _1, (Eq. 128)

q2 = £v;v*. _2, (Eq. 129)

q3 = £v;v* . _3, (Eq. 130)
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and

(Eq. 131)

(Eq. 132)

(Eq. 133)

(Eq. 134)

(Eq. 135)

(Eq. 136)

(Eq. 137)

(Eq. 138)

(Eq. 139)

(Eq. 140)

(Eq. 141)

(Eq. 142)

Next determine useful velocities and angular velocities in terms of these generalized

coordinates and generalized speeds. The angular velocities can be expressed as follows:

(Eq. 143)

Ncov = u& + usL + u6L, (Eq. 144)

and so_v= NOv--NooS=(u4--Ulo)_ 1 + (Us- U11)_2 + (U6 -- U12)_3 . (Eq. 145)

The velocity of the flotor center-of-mass is

Nd )V F _ __ (FNoS _{._FS F _{._FF F

- dt _- - -
: y S ..1_ N(_oS x£S F _.}_ £F F + × r (Eq. 146)
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In terms of the generalized coordinates and generalized speeds,

y_.F = V____S ..] N o_ S x £S F +_l(b/l+qSb/ll_q2b/12)

+_Sz(U2 +qlUlz-q3U_o)+_3(u3 +qzUlo-qlu_l).
(Eq. 147)

Accordingly, the respective velocities of the isolation point E, the eight actuator force-application

points B i , and the umbilical-attachment point F,, are as follows:

v__E: v__S+ No__s× r__sF* + _I(U _ +qSull- q2u_2)

+ _2(U2 +qlu_2--q3U_o)+_3(U3 +q2UlO--qlu_l)

+ NO___.F X ]" F*E

(Eq. 148)

_---Bi : _---Su "J[-__@_S x ff_SuFh -t-.._Sl("l + qSull -- q2u12 )

+_s2 (u2 +qlu12-qsUlo)+_s(us +q2U_o-q_uH)

N(_oF X ]"F*Bi ,

(Eq. 149)

and _vF_ :_vs"+ No___s× £s"n; + _1(Ul + qsull -- q2u12 )

+_S2(U2 +q_uI2 --qsU_o)+ _s(Us +q2U_O--q_uH)

N F F*Fu
+ _0 xr

(Eq. 150)

One can now express the linearized partial velocities (L.P.V.'s) and linearized partial

angular velocities (L.P.A.V.'s), corresponding to the foregoing velocities and angular velocities,

c?v E
_ - is the partial velocity (P.V.) of point E with respect to the

using the following notation: v_ - c?ui

•th N(.oF1 generalized speed u_, __ -

? Nd

6_ Ui
is the partial angular velocity (P.A.V.) of reference frame F

E N(.oFwith respect to reference frame N, and zv_ and z_i are the respective linearized velocity terms.

Assume now that No,)S _ O, SO that U_o= u_ = _2 = 0. Then v s" = 0 (i = 10,11,12). Assume

additionally that the flotor mass is much smaller than that of the combined stator-plus-orbiter, in
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whichcase S coF does not affect v s" Then v s" =0 (i=4,5,6) Similarly, since vS" is not affected-- -- " --i -- " --

by r F;F*or _ N°E V Su = 0 (i = 1, 2, 3, 7, 8, 9) That is,
-- -- ' --i -- "

v s" = 0 (i = 1, ,12)
--i -- ''' "

(Eq. 151)

Further, since v__s" is unaffected by _rF*E, _rf*Bi , or _rF% , one has the following L.P.V.'s and

L.P.A.V. s:

vF* = Si (i = 1, 2,3),
l--i

v F =0 (i=4,. 9)

E B i F u F*

,v, =,v, =,v, =,v, Viin{1 ..... 9} and Vj in {1.....8},

S F

lC0i =0 (i=1,2,3,7,8,9),

S F

l (04 = _1'

S F

l (-05 = _2,

S F

l (-06 = _3,

and Nc0F-- Sc0F (i = 1, 9).
l--i -- l--i "'" '

All L.P.V.'s and L.P.A.V.'s associated with ulo, u11, and///12 are 0.

In order to determine the linearized accelerations (L.A.'s) and linearized angular

accelerations (L.A.A.'s), one must first determine the linearized velocities (L.V. 's) and the

linearized angular velocities (L.A.V.'s). Assuming still that

lV__ F = V__ Su _- bll_ 1 "[- U2_ 2 "[- U3_3,

l v -- _1_ U1_1 _1_ U2 _2 _1_ U3 _3_1_ / F F*E

as follows:

(Eq. 152)

(Eq. 153)

(Eq. 154)

(Eq. 155)

(Eq. 156)

(Eq. 157)

(Eq. 158)

(Eq. 159)

No,)S _ O, the L.V.'s and L.A.V.'s are

(Eq. 160)

(Eq. 161)
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=v_. (_'_ xf"/), (Eq. 162)

lE Fu _ -t- UlS 1 -t-- U2 S 2 U3 $3--_- (Eq. 163)

ff__S _0, (Eq. 164)

and c°'_=fc°'_= "& + "_L + "_L. (Eq. 165)

Differentiating the L.V.'s and L.A.V.'s, and linearizing about smv = 0, yields the

following L.A.'s and L.A.A.'s:

= a S_,a_r _ + i_,_,+ i_2_2+ i_3_3, (Eq. 166)

a Su,,..q_E=_ +,:,,_,+/,2L+/,3_+(,:,&+/,_i_+/,_i_)xc'_'E (Eq. 167)

• aS_,__"'=_ +_,_, +_ +_,_, +(<_, +_5_2+ _3)×r_ r"/ (Eq. 168)

(Eq. 169)

ff__aS _0, (Eq. 170)

and 7a'_=fa'_= ,z_,+/,,L +&L. (Eq. 171)

Beginning with Equation (3), one can also obtain readily an alternate expression for sat •

;_a'_=L-'. A,,r +A,_+ r_.'_'_x(F,,,-Fb + r__'_" xF'
\ i=1

(Eq. 172)

The final step, before writing the generalized active forces and generalized inertia forces of

Kane's equations, is to determine the contributing loads:

The resultant of the actuator forces (cf. Eq. 44), which are considered to be applied at respective

locations B i , is

8 8

F = _[_,Fi = ,__,,(- IiLiBiL x _i)" (Eq. 173)
i=1 i=1
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The umbilical force (cf. Eq. 15), with the former term (in curly brackets) applied at F, and the

latter (umbilical bias force F b ) at F*, is

i=1

The direct disturbance force (cf. Eq. 41), applied at F*, is F d (unknown).

The umbilical moment (cf. Eq. 20), applied about F*, is

3

--_r=Z{-_:[(0_-_)_]_-_:[(+_-_)_]_}+--_
The direct disturbance moment (cf. Eq. 42), applied about F*, is M__d (unknown).

The above expressions for the contributing loads can also be written in measure-number

form, needed for eventual computer implementation. Equation (173) becomes

(S)_x
BI(F)B1]I1 + + £8 __ Fc I,_'___--[-_,_1'_ _ [__,_,x,_:_],___

[i ywhere _I= 1..... I8 •

Equation (174) is first re-expressed as

__ = _ +r ]'si s-i +Fb
i=1 [

This now can readily be rewritten as

t(sZ,,, = F,, q2 + F,,b u2 + (S)Fb - F,,b S/rQ (r)rr%X

[q3 [u3J

The direct disturbance force is simply (S)F d .

/u4tS/rQr u5 +F,_ (s)£b.

[u6J

(Eq. 174)

(Eq. 175)

(Eq. 176)

(Eq. 177a, b)

(Eq. 178)

(Eq. 179)

(Eq. 180)
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Equation (175) becomes

_F)M,r = M,rd q5 + M,re U5 + _F)Mb,

[q6 J [u6 J

(Eq. 181)

where M,rd = --S/FQrKr

and /_r,re = -S/FQrCr.

The direct disturbance moment is (F)___Md =(v_(/__. gd)"

Using the expressions for the L.P.V.'s and the L.P.A.V.'s with the contributing loads, the

generalized active forces (2, can be determined as follows:

I IS('OF "(MIM--ur "_- Md "_- [ FF X (£ut--£b)] "[-

I

Q5 = lS_of ---M,r+Md+

,,_o:.----'.r+_ +[rZ_×('_.,-L_)]+

£F_ xFi
c

i=1

8 f iE r F _ X ___
i=1

2r_ x£
i=1

_ _ ,

Q9

(Eq. 182)

(Eq. 183)

(Eq. 184)

and

(Eq. 185a, b)

(Eq. 186a, b)

(Eq. 187)
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The generalized inertia forces are

t/o,J ,_ff (-m,_

= S/UQ {F)(_I. _v) (linearizing aboutSco v =0), (Eq. 189a, b)

and {Os,[ = . (Eq. 190)

[o_J

K_e's Dynamical Equations for MIM can now be written in the following, recognizable

forms of Newton's Second Law:

(s_,,+ (S_c + (s_d-m (S,_a'e =0, (Eq. 191)

where [cf. Eq. (166)] (S)aF°=(SJai, + uz ; (Eq. 192)

and (S'{rFU x(F, -Fv)]+ (s_f )- -- S/Vo (V)M +s/ro (f)M s/Fr_ (v)z s _

where [cf. Eq. (171)] _S)S_F = /t5 . (Eq. 194)

6

These equations must now be placed into a usable state-space form.

(iDefine the following: x_. = q2 , (Eq. 195)

3
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Ix--b= = 02 =2__,

03

2-c = u8 = Ch =-(oh q8 +(oh -

u9 09 Lq9 J

(s)[ F rF E )= --(ohX--c+ (oh _,a_ -_ × ,_az ,

X'd = q5 ,

q6

/'/6 (16

(Eq. 196a, b, c)

(Eq. 197a, b, c, d)

(Eq. 198)

(Eq. 199)

and u = I. (Eq. 200)

Note that Equations (196) and (199) express Kane's Kinematical Equations.

Using state-definition equations (195), (196), and (199); force equations (177) and (180);

acceleration equation (192); and disturbance equations (40) and (41); Kane's Dynamical Equation

(191) becomes

= -_t_.,b U rv% _ (Eq. 201)

Likewise, using state-definition equations (195), (196), (198), and (199); force equations (177) and

(180); moment equations (82), (83), (181), and (184); angular acceleration equation (194); and
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disturbance equation (42); Kane's Dynamical Equation (193) becomes

-1 s/v i-1 N

I M,r e- I M,t b -v*v_ + ( I-1M_

+ ( s/Fo 1-1 11,4 _ (s_ r S/FQ i-1 (F_Mb

Eq. (202)

In terms of Euler parameters _x_d .'= _s_v/s[5 [where v/s[5 is defined by Eq. (26)], for small rotation

angle _) and negligible angular velocity UooSthe rotational states are

2"d = 2x__d , (Eq. 203)

2" = 2x_. (Eq. 204)and

Kinematical equations (196) and (199), and dynamical equations (201) and (202), now reduce to

the forms found previously, viz., Equations (123), (126), (124) and (127), respectively.

Concluding Remarks

This paper has presented the derivation of algebraic, state-space equations for the Canadian

Space Agency's Microgravity Vibration Isolation Mount. The states employed include payload

relative translational position (_x_)and velocity (x_;), payload relative rotation (x__ and rotation

rate (x__), and payload translational acceleration (x__). Feedback of x__ corresponds to a change in

effective umbilical translational stiffness, with the effective umbilical assumed to be attached at the

flotor center of mass. Similarly, feedback of _x_, =d,xc or _x_ corresponds, respectively, to a change

in translational damping, rotational stiffness, or rotational damping, for the same effective

umbilical. Likewise, feedback of payload translational acceleration causes a change in effective

payload mass. Thus, a cost functional which penalizes these states produces an intuitive effect on

system effective stiffness, damping, and inertia values.
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The acceleration states can be selected to pertain to any arbitrary point on the flotor. This

allows an optimal controller to be developed which penalizes directly the acceleration of any

significant point of interest, such as the location of a crystal in a crystal-growth experiment.

The equations have been put into state-space form so that the powerful controller-design

methods of optimal control theory (e.g., H 2 synthesis, H synthesis, fi synthesis, mixed-fi

synthesis, and _ analysis) can be used. References [11], [12], and [13] detail the H 2 optimal

controller design approach used for MIM.
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